BIBLIOTHÈQUE EN LIGNE Watchtower
Watchtower
BIBLIOTHÈQUE EN LIGNE
Français
  • BIBLE
  • PUBLICATIONS
  • RÉUNIONS
  • D’où sont venues les instructions ?
    Cinq questions à se poser sur l’origine de la vie
    • L’ADN est un sujet qui, expliqué en termes simples, peut être compris assez facilement et se révéler captivant. Retournons donc à l’intérieur d’une cellule. Cette fois, nous explorerons une cellule humaine. Imaginez que vous alliez visiter un musée destiné à enseigner comment ce genre de cellule fonctionne. Tout le musée est une maquette d’une cellule humaine grossie 13 000 000 de fois. Il est aussi immense qu’un stade de 70 000 places.

      Une fois entré, vous ouvrez de grands yeux devant la profusion de formes et de structures bizarres. Près du centre se trouve le noyau de la cellule, une sphère haute de 20 étages. C’est vers lui que vous vous dirigez.

      ADN empaqueté dans le noyau d’une cellule

      Une “ prouesse technique ” : l’agencement de l’ADN. Faire entrer l’ADN dans le noyau d’une cellule est une prouesse technique. C’est comme empaqueter 40 kilomètres de fil extrêmement fin dans une balle de tennis.

      Vous passez une porte au niveau de l’enveloppe extérieure, ou membrane, du noyau. Vous regardez autour de vous : 46 chromosomes dominent la pièce. Ils sont disposés par paires d’exemplaires identiques. Leur taille varie, mais la paire la plus proche de vous est aussi haute qu’un bâtiment de douze étages. Chaque chromosome (1) est resserré en sa zone médiane. On dirait un chapelet de deux saucisses aussi grosses que des énormes troncs d’arbres. Sur chaque chromosome, vous voyez des bandes horizontales. En vous rapprochant, vous remarquez que chacune est divisée par des lignes verticales reliées entre elles par de petites lignes horizontales (2). Seraient-​ce des piles de livres ? Non, ce sont des boucles compressées en colonnes. Vous tirez sur l’une d’elles, et elle vient de suite. Vous êtes surpris de constater qu’elle est composée de petites torsades (3) soigneusement agencées. Le composant principal de ces torsades ressemble à une très longue corde. De quoi s’agit-​il ?

      LA STRUCTURE D’UNE MOLÉCULE ÉTONNANTE

      Pour simplifier, nous parlerons de cette partie de la maquette d’un chromosome comme d’une corde. Épaisse de 2,5 centimètres, elle est enroulée, bien serrée, autour de cylindres (4), qui permettent de former d’autres torsades à l’intérieur des torsades. Les torsades sont reliées par une sorte d’échafaudage qui les maintient en place. Un panneau du musée explique que la corde est parfaitement enroulée. Si vous preniez la corde de chaque chromosome de la pièce et que vous mettiez toutes les cordes bout à bout, elles feraient la moitié de la circonférence de la Terrea !

      Un livre de science qualifie ce système de rangement d’“ extraordinaire prouesse technique⁠18 ”. L’hypothèse selon laquelle il n’y a pas de technicien derrière cette prouesse vous semble-​t-​elle crédible ? Si ce musée avait une boutique immense avec des millions d’articles à vendre, tous si bien disposés que vous pourriez facilement trouver tous ceux qu’il vous faudrait, penseriez-​vous que personne n’a organisé quoi que ce soit ? Bien sûr que non. Pourtant, un tel ordre ne serait qu’une performance simple en comparaison.

      Dans le musée, un panneau vous invite à prendre un bout de corde pour le regarder de plus près (5). En le faisant rouler entre vos doigts, vous vous rendez compte qu’il ne s’agit pas d’une corde ordinaire. Elle est composée de deux brins tressés, reliés à intervalles réguliers par de petits barreaux. On dirait une échelle tellement vrillée qu’elle ressemble à un escalier en colimaçon (6). Et là, cela fait tilt dans votre esprit : vous tenez une maquette de la molécule d’ADN, l’un des plus grands mystères du vivant !

      Un chromosome est formé d’une seule molécule d’ADN, bien arrangée avec ses cylindres et son échafaudage. Les barreaux de l’échelle sont appelés “ paires de bases ” (7). Quel est leur rôle ? À quoi tout cela sert-​il ? Un panneau donne une explication simplifiée.

      LE SYSTÈME DE STOCKAGE D’INFORMATIONS PAR EXCELLENCE

      Le secret de l’ADN, lit-​on sur le panneau, réside dans les barreaux de l’échelle. Imaginez que les deux montants de l’échelle se dissocient, chacun conservant des demi-barreaux. Il existe seulement quatre sortes de demi-barreaux, nommées A, T, G et C. Les scientifiques ont été stupéfaits de découvrir que l’ordre de ces lettres transmet des informations codées.

      Comme vous le savez sans doute, le morse est un code qui a été inventé au XIXe siècle pour communiquer par télégraphe. Son alphabet comportait seulement deux “ lettres ” : un point et un trait. Cependant, on s’en servait pour écrire quantité de mots et de phrases. Eh bien, l’ADN, lui, a quatre lettres (ou bases) : A, T, G et C. L’ordre dans lequel elles apparaissent forme des codons, autrement dit des “ mots ”. Les codons sont agencés en gènes, autrement dit en “ histoires ”. Chaque gène contient en moyenne 27 000 lettres. Ces gènes ainsi que les longs filaments qui les relient sont compilés en une sorte de “ chapitre ” : un chromosome. Chez l’humain, il faut 23 chromosomes pour former un “ livre ” complet : le génome, c’est-à-dire l’ensemble des informations génétiques d’un organismeb.

      Le génome serait un livre volumineux. Quelle quantité d’informations ce livre renfermerait-​il ? Pour tout dire, le génome humain est composé de quelque trois milliards de paires de bases, ou barreaux de l’échelle de l’ADN⁠19. Représentez-​vous une encyclopédie dont chaque tome aurait plus de mille pages. Le génome remplirait 428 tomes. Si on y ajoutait le duplicata qui se trouve dans chaque cellule, le nombre de tomes s’élèverait à 856. Pour effectuer la saisie des données du génome, il vous faudrait travailler 80 ans à plein temps, sans prendre de vacances !

      Bien entendu, le résultat de vos efforts serait inutile à votre organisme. Comment introduire des centaines de tomes épais dans chacune de vos cent mille milliards de cellules microscopiques ? La compression d’une telle quantité d’informations nous dépasse totalement.

      Un professeur en informatique et en biologie moléculaire a fait remarquer : “ Un gramme d’ADN sec occupe un volume de un centimètre cube environ et stocke autant d’informations qu’un millier de milliards de disques compacts⁠20. ” Qu’est-​ce que cela signifie ? Rappelez-​vous que l’ADN contient les gènes, les instructions pour bâtir un corps humain unique. Chaque cellule possède une série complète d’instructions. Les informations sont si denses qu’une cuillère à café d’ADN contiendrait les instructions nécessaires à la constitution de 350 fois plus d’humains qu’il n’en vit aujourd’hui ! L’ADN qu’il faudrait pour les sept milliards d’humains que compte la planète ne formerait qu’une fine pellicule sur la cuillère⁠21.

  • D’où sont venues les instructions ?
    Cinq questions à se poser sur l’origine de la vie
    • LECTURE ET COPIAGE D’UNE MOLÉCULE

      Échelle d’ADN

      Comment l’ADN peut-​il être lu et copié de manière aussi fiable ? Les quatre bases chimiques — A, T, G et C — forment les barreaux de l’échelle de l’ADN en s’appariant toujours de la même façon : A avec T, et G avec C. Si un demi-barreau est A, l’autre est forcément T ; si l’un est G, l’autre est forcément C. Donc, si vous avez un côté, vous pouvez déduire l’autre. Si GTCA se lit le long d’un montant de l’échelle, CAGT se lit obligatoirement de l’autre. La longueur des morceaux est variable mais complémentaire, de sorte que la longueur des paires de bases est uniforme.

      Cette vérité a conduit les chercheurs à une découverte capitale : la remarquable molécule d’ADN peut parfaitement être copiée et recopiée à l’infini. L’automate à enzymes qui duplique l’ADN absorbe des bases chimiques libres qui flottent dans le noyau. Puis il les utilise pour compléter chaque barreau de l’échelle.

      Ainsi, la molécule d’ADN est vraiment semblable à un livre qui serait lu et copié sans cesse. En moyenne, au cours d’une vie humaine, l’ADN est répliqué dix millions de milliards de fois, et avec une exactitude incroyable⁠28.

  • D’où sont venues les instructions ?
    Cinq questions à se poser sur l’origine de la vie
    • DES AUTOMATES EN MOUVEMENT

      Tandis que vous êtes dans le musée, au calme, vous vous surprenez à vous demander si le noyau d’une cellule reste aussi immobile dans la réalité. Puis vous remarquez une autre exposition. Sur un panneau placé au-dessus d’une vitrine contenant un bout de corde d’ADN, on lit : “ Appuyez sur le bouton pour une démonstration. ” C’est ce que vous faites. Un narrateur explique alors : “ L’ADN a au moins deux tâches importantes à effectuer. La première est la duplication. Il doit être copié pour que chaque nouvelle cellule dispose d’un exemplaire complet des mêmes informations génétiques. Regardez la simulation. ”

      Par une porte située à une extrémité de la vitrine arrive un automate qui semble très complexe. Il s’agit en fait de plusieurs robots liés étroitement entre eux. L’automate va jusqu’à l’ADN, s’y attache et commence à se déplacer le long de celui-ci tout comme un train sur une voie ferrée. Il circule un peu trop vite pour que vous discerniez ce qu’il fait exactement, mais vous voyez bien que, derrière lui, il y a maintenant deux cordes au lieu d’une.

      Le narrateur reprend : “ C’est une représentation extrêmement simplifiée de ce qui se passe quand l’ADN est dupliqué. Un ensemble d’automates moléculaires appelés enzymes circulent le long de l’ADN, commencent par le diviser en deux, puis utilisent chaque brin comme modèle pour produire un nouveau brin complémentaire. Nous ne pouvons pas vous montrer tous les éléments impliqués, comme le minuscule mécanisme qui, devançant l’automate duplicateur, détache les deux brins d’ADN pour que ceux-ci pivotent librement plutôt que de s’enrouler, trop serrés. Nous ne pouvons pas non plus vous montrer comment les copies de l’ADN sont corrigées plusieurs fois. Les erreurs sont détectées et corrigées à un degré de précision incroyable. ” — Voir le schéma des pages 16 et 17.

      La duplication : copiage de l’ADN

      1. Cette partie de l’automate à enzymes sépare les deux brins d’ADN.

      2. Cette partie de l’automate prend un brin d’ADN et s’en sert comme modèle pour réaliser un double brin.

      3. Collier coulissant qui guide et stabilise l’automate à enzymes.

      4. Deux brins entiers ont été formés.

        Copiage de l’ADN par un automate à enzymes

      Si l’ADN était de la taille d’un chemin de fer, l’automate à enzymes se déplacerait à plus de 80 kilomètres-heure.

      Le narrateur ajoute : “ En revanche, ce que nous pouvons vous montrer clairement, c’est la vitesse. Vous avez sûrement remarqué que le robot allait à folle allure. Eh bien, dans la réalité, les automates que sont les enzymes circulent le long de la ‘ voie ’ de l’ADN à un rythme d’environ 100 paires de bases par seconde⁠23. Si cette ‘ voie ’ était de la taille d’un chemin de fer, la ‘ locomotive ’ foncerait à plus de 80 kilomètres-heure. Dans les bactéries, ces automates duplicateurs se déplacent dix fois plus vite ! Dans une cellule humaine, ces petits appareils s’activent par centaines le long de l’ADN. Ils dupliquent l’intégralité du génome en seulement huit heures⁠24. ” (Voir l’encadré “ Lecture et copiage d’une molécule ”, page 20.)

      “ LECTURE ” DE L’ADN

      Les robots duplicateurs d’ADN quittent bruyamment la scène. Un autre automate apparaît. Lui aussi longe une séquence d’ADN, mais plus lentement. Vous voyez la corde entrer dans la machine et en ressortir inchangée du côté opposé. Cependant, un nouveau brin unique sort d’une autre ouverture encore, comme si une queue poussait. Que se passe-​t-​il ?

      Le narrateur poursuit ses explications : “ La deuxième tâche de l’ADN est la transcription. L’ADN ne quitte jamais son abri sûr, le noyau. Comment ses gènes — les recettes pour former toutes les protéines de notre corps — peuvent-​ils donc être lus et utilisés ? Eh bien, l’automate à enzymes trouve un endroit le long de l’ADN où un gène a été activé par des signaux chimiques venus de l’extérieur du noyau. Puis il se sert d’une molécule appelée ARN pour dupliquer ce gène. L’ARN ressemble beaucoup à un brin d’ADN, mais il ne faut pas s’y tromper. Sa tâche est de collecter les informations codées dans les gènes. L’ARN les obtient dans l’automate à enzymes, puis sort du noyau et se dirige vers un ribosome, où ces informations serviront à construire une protéine. ”

      La transcription : “ lecture ” de l’ADN

      1. ADN déroulé. Un brin dénudé transmet des informations à l’ARN.

      2. L’ARN “ lit ” l’ADN en collectant les informations codées dans les gènes. Le code de l’ADN indique à l’automate transcripteur où commencer et où s’arrêter.

      3. Chargé d’informations, l’ARN sort du noyau et va vers un ribosome, à qui il communiquera les instructions pour fabriquer une protéine complexe.

      4. Automate transcripteur.

        ADN lu par l’ARN

      Cette démonstration vous émerveille. Le musée ainsi que l’ingéniosité de ceux qui l’ont conçu et ont fabriqué ses machines vous fascinent. Et si tout le musée avec ses nombreuses expositions pouvait être mis en branle ? On verrait alors des centaines de milliers de tâches s’effectuer simultanément, comme dans une cellule humaine. Quel spectacle grandiose ce serait !

      Vous vous rendez compte que tous ces processus mis en œuvre par de minuscules automates complexes se déroulent à l’instant présent dans vos cent mille milliards de cellules ! Votre ADN est lu, ce qui fournit les instructions pour construire les centaines de milliers de protéines différentes qui forment votre corps : ses enzymes, ses tissus, ses organes, etc. En ce moment même, votre ADN est copié et corrigé de sorte que chaque nouvelle cellule dispose d’un jeu d’instructions tout neuf.

  • D’où sont venues les instructions ?
    Cinq questions à se poser sur l’origine de la vie
    • a Le livre de cours Biologie moléculaire de la cellule utilise une autre image. Il dit que faire entrer ces longues cordes dans le noyau d’une cellule équivaut à empaqueter 40 kilomètres de fil extrêmement fin dans une balle de tennis, mais d’une façon si bien organisée que chaque partie du fil reste facile d’accès.

      b Les cellules contiennent deux exemplaires complets du génome, soit 46 chromosomes.

  • D’où sont venues les instructions ?
    Cinq questions à se poser sur l’origine de la vie
Publications françaises (1950-2025)
Se déconnecter
Se connecter
  • Français
  • Partager
  • Préférences
  • Copyright © 2025 Watch Tower Bible and Tract Society of Pennsylvania
  • Conditions d’utilisation
  • Règles de confidentialité
  • Paramètres de confidentialité
  • JW.ORG
  • Se connecter
Partager